
A reinforcement learning extension to the Almgren-
Chriss framework for optimal trade execution

D. Hendricks and D. Wilcox

劉冠銘, 羅名志 / NYCU IMF

Outline

• Introduction

• Review : The Almgren-Chriss model

• Implementation
• States, Actions, Rewards

• Algorithm and Methodology

• Data & Results

• Implementation – polymer data

Introduction

Introduction

• Instead of *pure RL solution to the problem, here propose a hybrid
approach :
• Using Almgren-Chriss (AC) model as a base

• the algorithm determines the proportion of the AC-suggested trajectory to
trade based on prevailing volume / spread attributes, etc.

• The problem is a finite-horizon Markov Decision Problem (MDP)

• The model is compared with the base AC model

* Y. Nevmyvaka, Y. Feng., M. Kearns. Reinforcement learning for optimal trade execution,
Proceedings of the 23rd international conference on machine learning, pp. 673-680, 2006.

Review
Almgren–Chriss Model

ref : AC_presentation
*R. Almgren, N. Chriss. Optimal execution of portfolio transactions

Almgren-Chriss Model

• Consider the execution of portfolio transactions with the aim of
minimizing a combination of risk and market impact :

• derive closed form solutions with discrete time horizon, given volume

• includes risk aversion, permanent/temporary market impact

Parameters

• X : total shares to trade

• 𝑥𝑘 : remaining inventory at time k

• 𝜏 : time interval (𝜏 =T/N)

• 𝑡𝑘 = 𝑘𝜏 for k = 0, 1, …, N : total passed time

• 𝑛𝑘 = 𝑥𝑘−1 − 𝑥𝑘 : trade size at time t

• 𝑣𝑘 =
𝑛𝑘

𝜏
: velocity (shares per unit time)

• in this paper : sell side

Price Dynamics(theoretical price)

𝜉𝑗: standard normal deviation (𝜇 = 0, 𝜎 = 1)

σ : volatility of the asset

𝑔(𝑣) : permanent impact function

(function of average rate 𝑣, assume no drift term)

With Temporary impact (actual price)

Sk-1: including its own permanent impact and deviation

ℎ(𝑣) : temporary impact function

(function of average rate 𝑣)

Trading trajectories

• Capture(gain):

• Trading cost:

Our goal is to minimize the trading negative utility

Sk

- = - +

• E(x) : expected cost of trading cost

• V(x) : variation of trading cost

• We will show that for each value of λ such that
E(x)+λV(x) is minimal

Minimize

Assumption of Linear impact

• For permanent

• For temporary

ℎ 𝑣 = ε sgn 𝑛𝑘 + η 𝑣

, where γ has units ($/share)/(share/time)

, where units of ε are $/share, and η are ($/share)/(share/time)
ε : fixed cost of selling (1/2 bid ask spread)

linear market impact model

• rewrite

(1)

(2)

, where

The utility function

, where 𝜆 is risk aversion

the term ‘utility’ in this paper is the function above, to prevent ambiguity, here we use ‘negative utility’
to describe the combination of trading cost and risk.

optimal strategy

• minx(E(x)+λV(x)) => differentiate negative utility

𝜕U

𝜕𝑥𝑗
• we get optimal xj, nj:

where ෨𝑘2 =
λσ2

෥η
, and ෨𝑘2 =

2

τ2
(cosh 𝑘τ − 1)

Implementation

States, Actions, Rewards

Algorithm and Methodology

States

• T = Trading Horizon

• V = Total Volume-to-Trade,

• H = Hour of day when trading will begin

• I = Number of remaining inventory states

• B = Number of spread states

• W = Number of volume states

• 𝑠𝑝𝑛 = %ile Spread of the nth tuple

• v𝑝𝑛 = %ile Bid/Ask Volume of the nth tuple

• Elapsed Time: 𝑡𝑛 = 1, 2, 3, ..., T

• Remaining Inventory: 𝑖𝑛= 1, 2, 3, ..., I

• Spread State: 𝑠𝑛 =

1, 𝑖𝑓0 < 𝑠𝑝𝑛 ≤
1

𝐵

2, 𝑖𝑓
1

𝐵
< 𝑠𝑝𝑛 ≤

2

𝐵
…

𝐵, 𝑖𝑓
𝐵−1

𝑅
< 𝑠𝑝𝑛 ≤ 1

• Volume state : 𝑣𝑛 =

1, 𝑖𝑓 0 < 𝑣𝑝𝑛 ≤
1

𝑊

2, 𝑖𝑓
1

𝑊
< 𝑣𝑝𝑛 ≤

2

𝑊
…

𝑊, 𝑖𝑓
𝑊−1

𝑊
< 𝑣𝑝𝑛 ≤ 𝑊

States

• for the nth episode, the state attributes can be summarized as the
following tuple :
• 𝑧𝑛 =< 𝑡𝑛, 𝑖𝑛, 𝑠𝑛, 𝑣𝑛 >

• for 𝑠𝑛, 𝑣𝑛, we first construct a historical distribution of spreads and
volumes.

Actions

• Based on the AC model, we first calculate AC volume trajectory

• our learning agent is to modify the AC volume trajectory based on
prevailing states

• the possible actions for our agent include :
• 𝛽𝑗 = 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝐶𝑡 𝑡𝑜 𝑡𝑟𝑎𝑑𝑒

• 𝛽𝐿𝐵 = 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝑣𝑜𝑙𝑢𝑚𝑒 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡𝑟𝑎𝑑𝑒

• 𝛽𝑈𝐵 = 𝑈𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝑣𝑜𝑙𝑢𝑚𝑒 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡𝑟𝑎𝑑𝑒

• Action : 𝑎𝑗𝑡 = 𝛽𝑗𝐴𝐶𝑡 , 𝑤ℎ𝑒𝑟𝑒 𝛽𝐿𝐵 ≤ 𝛽𝑗 ≤ 𝛽𝑈𝐵 𝑎𝑛𝑑 𝛽𝑗 = 𝛽𝑗−1 + 𝛽𝑖𝑛𝑐𝑟

Rewards

• if we consider ‘Buy’

• every iteration, the rewards is calculate by initial price - average
execution price (VWAP)

• need the information of LOB

Q-learning

• Algorithm :
• observes its current state 𝑥𝑛
• selects and performs an action 𝑎𝑛
• observes the subsequent state 𝑦𝑛as a result of performing action 𝑎𝑛
• receives an immediate reward 𝑟𝑛 and

• uses a learning factor α𝑛 , which decreases gradually over time.

• Q is updated as follows :
• 𝑄𝜋 𝑥𝑛, 𝑎𝑛 = (1 − α𝑛)𝑄

𝜋 𝑥𝑛, 𝑎𝑛 + α𝑛(𝑟𝑛 + 𝛾max
𝑏

𝑄(𝑥𝑛+1, 𝑏))

𝑉∗ 𝑥 = 𝑉𝜋∗ 𝑥 = max
𝑎

{ 𝑅𝑥 𝑎 + 𝛾෍

𝑦

𝑃𝑥𝑦 𝑎 𝑉𝜋∗(𝑦)}

Algorithm

Optimal_strategy (V, H, T, I, L)
From episode 1 to n{

For t = T to 1 {
For i = 0 to I {

For a = 1 to A {
Set x = {t, i, s, v}
calculate IS from trade R(x,a)
Simulate transition x → y
Look up argmax Q(y, p)
Update Q(x, a) = Q(x, a) + alpha*U }}}}

Data & Results

• market depth tick data (2012/06 – 2012/12), stocks from South Africa

• data include 5 levels of order book depth

• Stocks : SBK, AGL, SAB

• the RL model is able to improve implementation shortfall by 4.8%

Parameter

• 𝛽𝐿𝐵 = 0, 𝛽𝑈𝐵 = 2, 𝛽𝑖𝑛𝑐𝑟 = 0.25

• 𝛾 = 1, 𝜆 = 0.01(risk aversion coef)

• 𝜏(time interval) = 5-min, 𝛼0(initial decay factor) = 1

• T(trading horizon) : 4(20min), 8(40min), 12(60min)

• H(starting hour) : 9, 10, 11, 12, 13, 14, 15, 16

• V(total shares to trade) = 100000, 1000000

• I,B,W (nums of inventory / spread / volume states)= 5, 10

• BUY / SELL : BUY

Result

Result

Implementation

Setting and Parameter

• data :
• 2914.T (Japan Tobacco Inc.)

• training data (each day) : 2021 / 7 / 1 – 2022 / 6 / 23 (about 200 trading days)

• testing data (each day): 2022 / 6 / 24 – 2022 / 6 / 30 (about 5 trading days)

• setting :
• to sell X shares in time period T

Setting and Parameter

• 𝛽𝐿𝐵 = 0, 𝛽𝑈𝐵 = 2, 𝛽𝑖𝑛𝑐𝑟 = 0.25

• 𝛾 = 1, 𝜆 = 2 ∗ 10−7(risk aversion coef)

• 𝜏(time interval) = 1 hour, 𝛼0(initial decay factor) = 1

• T(trading horizon) : 6 (1 day, 6 hours)

• H(starting hour) : 9

• V(total shares to trade) = 100000

• I,B,W (nums of inventory / spread / volume states)= 10

• BUY / SELL : SELL

Adjustment

• implementation shortfall : initial mid price – vwap

• cause we don’t have market depth data :
• assume the distribution of LOB is uniformly distributed

• trade direction is ‘SELL ‘ :
• implementation shortfall : vwap – initial mid price

• reward :
• at t = T : action = inv

• if shares to trade > inventory level : reward = inventory level – shares to trade

AC trajectory

the case of risk aversion :

1 : 30558 (shares)
2 : 22014 (shares)
3 : 16178 (shares)
4 : 12334 (shares)
5 : 10006 (shares)
6 : 8910 (shares)

RL strategy

• after each epoch :
• store the implementation shortfall of AC strategy and RL strategy

• at the end compare the performance

Result

average of IS :
- RL strategy : - 0.00325
- AC strategy : - 0.00089

average of IS :
- RL strategy : -0.00083
- AC strategy : 0.00064

num of I, V, S

• assume I, V, S = 5 (from 10 to 5)

average of IS :
- RL strategy : -0.00051
- AC strategy : - 0.00089

average of IS :
- RL strategy : -0.00029
- AC strategy : 0.00064

possible problems

• no sufficient training data (Q table is sparse)

• Q update function
• 𝑄 = (1 − α)𝑄 𝑥, 𝑎 + (α) 𝑅 𝑥, 𝑎 + max𝑄(𝑦, 𝑝))

• unit of remaining inventory and action aren’t consistent

Future Work

• time scale : hour -> minute

• consider temporary price impact

• using DQN
• “An application of deep reinforcement learning to algorithmic trading.” 2021.

• “Double deep q-learning for optimal execution.” 2021.

• continuous state, action

https://drive.google.com/drive/u/0/folders/1o0LFv6P9OczLn3W26_6SRMtWtdGdrAMF
https://drive.google.com/drive/u/0/folders/1xJ3n6Hwvo1RV8IbPgThiPPr07GO-g_H7

Ref.

• https://arxiv.org/pdf/1403.2229.pdf

• https://zhuanlan.zhihu.com/p/416082069

• https://youtu.be/z95ZYgPgXOY

• https://github.com/fdasilva59/Udacity-Deep-Reinforcement-Learning-
Nanodegree/blob/master/drl-finance/4-DRL.ipynb

• https://zhuanlan.zhihu.com/p/431137706

• https://github.com/fdasilva59/Udacity-Deep-Reinforcement-Learning-
Nanodegree/blob/master/drl-finance/syntheticChrissAlmgren.py

• https://www.zhihu.com/question/26408259

• https://youtu.be/Ye018rCVvOo

37

https://youtu.be/z95ZYgPgXOY
https://github.com/fdasilva59/Udacity-Deep-Reinforcement-Learning-Nanodegree/blob/master/drl-finance/4-DRL.ipynb
https://github.com/fdasilva59/Udacity-Deep-Reinforcement-Learning-Nanodegree/blob/master/drl-finance/4-DRL.ipynb
https://zhuanlan.zhihu.com/p/431137706
https://github.com/fdasilva59/Udacity-Deep-Reinforcement-Learning-Nanodegree/blob/master/drl-finance/syntheticChrissAlmgren.py
https://github.com/fdasilva59/Udacity-Deep-Reinforcement-Learning-Nanodegree/blob/master/drl-finance/syntheticChrissAlmgren.py
https://www.zhihu.com/question/26408259
https://youtu.be/Ye018rCVvOo

	投影片 1: A reinforcement learning extension to the Almgren-Chriss framework for optimal trade execution
	投影片 2: Outline
	投影片 3: Introduction
	投影片 4: Introduction
	投影片 5: Review
	投影片 6: Almgren-Chriss Model
	投影片 7: Parameters
	投影片 8: Price Dynamics(theoretical price)
	投影片 9: With Temporary impact (actual price)
	投影片 10: Trading trajectories
	投影片 11
	投影片 12: Assumption of Linear impact
	投影片 13: linear market impact model
	投影片 14: The utility function
	投影片 15: optimal strategy
	投影片 16: Implementation
	投影片 17: States
	投影片 18: States
	投影片 19: Actions
	投影片 20: Rewards
	投影片 21: Q-learning
	投影片 22: Algorithm
	投影片 23: Data & Results
	投影片 24: Parameter
	投影片 25: Result
	投影片 26: Result
	投影片 27: Implementation
	投影片 28: Setting and Parameter
	投影片 29: Setting and Parameter
	投影片 30: Adjustment
	投影片 31: AC trajectory
	投影片 32: RL strategy
	投影片 33: Result
	投影片 34: num of I, V, S
	投影片 35: possible problems
	投影片 36: Future Work
	投影片 37: Ref.

